top of page

BNA Organic Crystal

N-benzyl-2-methyl-4-nitroaniline

•  THz/MIR generator and detector​​

•  Multi-THz generator​

•  Second harmonic generator

BNA_Pna21_150K.png

Applications

WhatsApp Image 2020-11-11 at 9.09.17 PM

We use our IP-protected Sapphire-BNA technology to overcome the damage of BNA crystals from high-power

Ti: Sa 800 nm lasers.​

Examples of Sapphire strongly help in preventing the heating up and melting of the BNA crystal. Images below are thermal images. 2 kHz/ 800 nm. Sapphire-BNA was exposed to 12 mJ/cm2. Glass-BNA was exposed to 3.7 mJ/cm2.

BNA1.jpg
BNA2.jpg
BNA3.jpg

Work done by A. Gopal (Jena Uni, Germany). Idea from Johannes Hasse (PSI, Switzerland).

Example Output

BNA5.png
BNA4.png
1250BNA.jpg

 Ti:Sa 800 nm: > 4 MV/cm (pp). Smooth Electric field trace. Perfect beam profile.

Using old technology (no sapphire). Result by A. Gopal (Jena, Germany). Accepted to Opt. Express. 

    

OPA 1250 nm: > 6 MV/cm (pp). Super broad spectrum. 0.8% efficiency. Perfect beam profile. Diffraction limited focusing using our RIGI microbolometer camera. 

Screen Shot 2019-07-03 at 14.48.47.png
Screen Shot 2019-07-03 at 14.47.50.png

Laser Requirements

DSTMS operates with all conventional types of lasers​

      • Ti:Sa 800 nm 

      • OPA/ OPCPA

      • 1030 nm laser

Expected Output

•  Input laser: 1 mJ Ti:Sa 800 nm

•  Output THz: 1 MV/cm,  2.1 µJ

Application 1: Intense Nonlinear Spectroscopy 

Comparison with conventional ZnTe sources:

BNA-2-application-1.jpg

Application 2: Broadband Linear Spectroscopy

Comparison with conventional Lithium Niobate sources:

BNA-APPLICATION-222.jpg

Application 3: X-ray Streaking Camera

BNA spectrum provides 5 times better streaking resolution than Lithium Niobate presently employed in all X-ray streaking cameras.

Literature

Opt. Lett. 4, 1777 (2016); APL 98, 091106 (2011);  JOSA B 25, B6 (2008); 

Opt. Express 15, 13212 (2007); Appl. Phys. Lett. 98, 091106 (2011); Opt. Lett. 33, 252 (2008)

bottom of page